I+D+i

Inteligencia artificial cuántica para predecir el rendimiento de los cultivos agrícolas

23/03/2022

Un equipo formado por investigadores del CSIC y el grupo empresarial GMV está desarrollando una prueba piloto que usará la inteligencia artificial cuántica para predecir el rendimiento de los cultivos agrícolas. La prueba, incluida en el proyecto público-privado AgrarIA, procesará imágenes de satélite para formar un predictor sobre el rendimiento de los cultivos basado en aprendizaje automático cuántico (o QML, Quantum Machine Learning, en inglés)


Para llevar a cabo esta prueba de concepto, se usará un conjunto de datos de imágenes satelitales públicas pre-procesado, se desarrollará un predictor basado en aprendizaje automático cuántico, y se realizará la evaluación e interpretación de resultados. Asimismo, también se ampliará modelo de predicción incorporando otros datos: clima, imagen multi-espectral, datos de riesgo, etc.


"En este proceso realizaremos comparaciones entre las predicciones obtenidas por los modelos cuánticos con los modelos de computación tradicionales. Esto nos permitirá explorar nuevos métodos para incorporar información de imágenes en algoritmos cuánticos, así como nuevos paradigmas de aprendizaje automático cuántico y de inspiración cuántica, a la vez que impulsamos el avance de la inteligencia artificial en agricultura", explican Ángela Ribeiro y Juan José García Ripoll, investigadores del CSIC.


En la agricultura, se busca el constante desarrollo de herramientas que ayuden a gestionar el cultivo y que puedan llegar a realizar predicciones de las condiciones meteorológicas que influirán sobre el cultivo, para implementar sistemas mucho más eficaces y adaptados.